Convergence analysis of canonical genetic algorithms
نویسنده
چکیده
This paper analyzes the convergence properties of the canonical genetic algorithm (CGA) with mutation, crossover and proportional reproduction applied to static optimization problems. It is proved by means of homogeneous finite Markov chain analysis that a CGA will never converge to the global optimum regardless of the initialization, crossover, operator and objective function. But variants of CGA's that always maintain the best solution in the population, either before or after selection, are shown to converge to the global optimum due to the irreducibility property of the underlying original nonconvergent CGA. These results are discussed with respect to the schema theorem.
منابع مشابه
Sequential and Mixed Genetic Algorithm and Learning Automata (SGALA, MGALA) for Feature Selection in QSAR
Feature selection is of great importance in Quantitative Structure-Activity Relationship (QSAR) analysis. This problem has been solved using some meta-heuristic algorithms such as: GA, PSO, ACO, SA and so on. In this work two novel hybrid meta-heuristic algorithms i.e. Sequential GA and LA (SGALA) and Mixed GA and LA (MGALA), which are based on Genetic algorithm and learning automata for QSAR f...
متن کاملSequential and Mixed Genetic Algorithm and Learning Automata (SGALA, MGALA) for Feature Selection in QSAR
Feature selection is of great importance in Quantitative Structure-Activity Relationship (QSAR) analysis. This problem has been solved using some meta-heuristic algorithms such as: GA, PSO, ACO, SA and so on. In this work two novel hybrid meta-heuristic algorithms i.e. Sequential GA and LA (SGALA) and Mixed GA and LA (MGALA), which are based on Genetic algorithm and learning automata for QSAR f...
متن کاملCanonical Analysis for Assessment of Genetic Diversity of Three Indigenous Chicken Ecotypesin North Gondar Zone, Ethiopia
Rapid exploratory field survey, to identify indigenous chicken ecotypes was conducted in north Gondar zone of Ethiopia. Chicken ecotypes including Necked neck, Gasgie and Gugut from Quara, Alefa and Tache Armacheho districts were identified, respectively. Morphological variations among the three study populations and nine measurable traits were evaluated. General linear model, canonical discrim...
متن کاملConvergence Analysis of Quantum Genetic Algorithm
It is an important and a complicated task to investigate the convergence of a new genetic algorithm based on quantum mechanics concepts including qubits and superposition of states, namely Quantum Genetic Algorithm, in the field of evolutionary computation. This paper analyzes convergence property of quantum genetic algorithm which uses its special quantum operator instead of canonical operator...
متن کاملA Novel Experimental Analysis of the Minimum Cost Flow Problem
In the GA approach the parameters that influence its performance include population size, crossover rate and mutation rate. Genetic algorithms are suitable for traversing large search spaces since they can do this relatively fast and because the mutation operator diverts the method away from local optima, which will tend to become more common as the search space increases in size. GA’s are base...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IEEE transactions on neural networks
دوره 5 1 شماره
صفحات -
تاریخ انتشار 1994